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Abstract We present the Wrst genetic maps of globe arti-
choke (Cynara cardunculus var. scolymus L. 2n=2x=34),
constructed with a two-way pseudo-testcross strategy. A
F1 mapping population of 94 individuals was generated
between a late-maturing, non-spiny type and an early-
maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-
SAP primer combinations chosen identiWed, respectively,
352, 38 and 41 polymorphic markers. Of 32 microsatellite
primer pairs tested, 12 identiWed heterozygous loci in one
or other parent, and 7 were fully informative as they seg-
regated in both parents. The female parent map com-
prised 204 loci, spread over 18 linkage groups and
spanned 1330.5 cM with a mean marker density of
6.5 cM. The equivalent Wgures for the male parent map
were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM.
About 3% of the AFLP and AFLP-derived markers dis-
played segregation distortion with a P value below 0.01,
and were not used for map construction. All the SSR loci
were included in the linkage analysis, although one locus
did show some segregation distortion. The presence of 78
markers in common to both maps allowed the alignment
of 16 linkage groups. The maps generated provide a Wrm
basis for the mapping of agriculturally relevant traits,
which will then open the way for the application of a
marker-assisted selection breeding strategy in this species.

Introduction

Globe artichoke (Cynara cardunculus var. scolymus L.)
makes an important contribution to the Mediterranean
agricultural economy, producing over 800 kt of crop
from more than 80 kha of cultivated land (FAO data
2004: http://www.faostat.fao.org/). Almost 85% of the
world artichoke production originates from Europe. The
species is also grown in North Africa, the Middle East,
South America, the USA and China (FAO data 2004).
The edible part of the plant is the head (formally the
capitulum), which is the immature composite inXores-
cence, used as both a fresh and a canned delicacy world-
wide. Each plant produces small, medium and large
heads, with the largest formed at the apex of the terminal
buds along the central stem. The smaller heads develop
on the lateral branches. The origin of the artichoke dates
back to the era of Theophrastus, the Greek (371–287 BCE)
who described their cultivation in Southern Italy and
Sicily. In 77 CE, the Roman naturalist Pliny the Elder
mentioned their use for medicinal purposes, but it was
most probably between 800 and 1,500 CE that the arti-
choke was domesticated and transformed, presumably in
monastery gardens, into the plant which we know today.

Artichoke is a non-fat, zero cholesterol food, rich in
folate (vitamin B), vitamin C and minerals, and is a prom-
ising source of biopharmaceuticals, such as inulin from its
roots (Brown and Rice-Evans 1998), and antioxidant
compounds, such as luteolin and di-caVeoylquinic acids
from its leaves (Gebhardt 1997). Furthermore, good eat-
ing quality oil can be extracted from its seeds (Maccarone
et al. 1999) and the whole plant can be used for the pro-
duction of ligno-cellulosic biomass for energy or paper
pulp manufacture (Gominho et al. 2001). Italy is the lead-
ing producer of globe artichoke (480 kt per year, FAO
data 2004), and also houses the most abundant in situ
diversity (Bianco 1990). Distinct varietal groups, well
adapted to local environments and local tastes, are
generally identiWed on the basis of harvest time (early- to
late-maturing types), size and shape of the head, and
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presence/absence of spines on the head bracts. Recently, a
living worldwide collection of 89 varietal types was char-
acterized by AFLP proWling (Lanteri et al. 2004), and two
major, genetically diVerentiated groups were identiWed:
group A includes the non-spiny types with elongated or
spherical or sub-spherical capitula, and group B the spiny
and non-spiny types with medium-small capitula. The
Wngerprint data provided a demonstration that the traits
selected by man have played an important role in shaping
the variation and diVerentiation within cultivated arti-
choke, and supported the hypothesis that globe artichoke
was domesticated from wild cardoon (Cynara cardunculus
var. sylvestris).

Globe artichoke is predominantly cross-pollinating.
Cross-fertilization is largely enforced in nature by prot-
andry, so that by applying simple strategies of pollen
preservation and application, it is possible to obtain sel-
fed progenies (Mauromicale and Ierna 2000); however,
repeated selWng does induce a considerable level of
inbreeding depression (Pécaut 1983). At present, com-
mercial production is based mainly on the perennial cul-
tivation of vegetatively propagated clones via crown
shoots; although vegetative propagation is costly and is
responsible for pathogen diVusion (mainly viruses), it
guarantees higher yields of marketable artichokes. Seed-
propagated cultivars are becoming popular in some
parts of the world, particularly in Israel, Spain and USA
(Basnizki and Zohary 1987, 1994; Mauromicale et al.
2004), but they often lack uniformity and their perfor-
mance is rather unpredictable. At present artichoke
breeding is limited to a small number of studies aimed at
understanding the inheritance of some major traits
(Pécaut 1993; Lopez Anido et al. 1998; Mauromicale
et al. 2000). Common breeding aims are to promote ear-
liness, yield and quality, and selection is largely based on
intra-clonal variation (Deidda 1967; Abbate and Noto
1981; Pécaut 1993; Mauromicale et al. 2000; Gil and
Villa 2003). Few attempts have been made to use hybrid-
ization between varietal groups to generate novel genetic
combinations (Basnizki and Zohary 1987, 1994; Miller
1975; Scarascia Mugnozza and Pacucci 1976; Tesi 1976).
In order to move to a crossing strategy for breeding,
some knowledge of artichoke genetics would be advanta-
geous, in particular a framework of linkage relationships,
which will facilitate the identiWcation and localization of
genes controlling important traits, subsequently opening
the way for marker-assisted selection.

The aim of the present work was to develop the Wrst
marker-based genetic maps of globe artichoke by apply-
ing a combination of marker technologies. The strategy
adopted was the double pseudo-testcross, pioneered in
Eucalyptus by Grattapaglia and SederoV (1994), and
subsequently applied to a number of out-breeding spe-
cies such as Poa pratensis (Porceddu et al. 2002),
Alstroemeria aurea (Han et al. 2002), Salix spp. (Hanley
et al. 2002; Barcaccia et al. 2003), Olea europea (Wu et al.
2004), Larix decidua (Arcade et al. 2000), Vitis spp.
(DoucleV et al. 2004), Carya illinoinensis (Beedanagari
et al. 2005) and Malus spp. (Kenis and Keulemans 2005).

This approach produces two independent maps, one for
each parent (Weeden 1994; Atienza et al. 2002; Yin et al.
2002; La Rosa et al. 2003), and is particularly suited to
cross-pollinating species, where individuals typically dis-
play a high level of heterozygosity.

Materials and methods

Plant material and DNA isolation

A controlled intraspeciWc cross was performed in the
experimental Welds at the University of Catania in Cassi-
bile (Siracusa, Sicily), using as female a single clone of
‘Romanesco C3’, and as male a single clone of ‘Spinoso
di Palermo’. The former is a non-spiny varietal type,
while the latter carries long sharp spines on its bracts and
leaves. Seeds obtained from the cross were germinated in
lightly moistened potting mix at room temperature.
Emergence was observed within about 10 days, and
healthy seedlings were transferred to the Weld after
30 days, at which stage there were typically three true
leaves. The presence and absence of spines was scored on
well-developed leaves of each F1 plant. Two weeks after
transplanting in the Weld DNA was extracted from each
plant following the procedures described by Lanteri et al.
(2001), and DNA concentration was estimated by ethi-
dium bromide-Xuorometry against DNA standards.
After checking each presumptive F1 plant for hybridity
using informative SSR markers (data not shown), 94
progenies were selected for segregation analysis and
genetic map construction. However, because a large
number of AFLP Wngerprints for one individual were
not readable, the genetic maps were Wnally based on a
population of 93 individuals.

Marker analysis

For AFLP Wngerprinting, we adapted the protocol of
Vos et al. (1995), as detailed by Lanteri et al. (2003).
BrieXy, 5 �l of extracted DNA (400–500 ng) were co-
digested with EcoRI (or PstI) and MseI, and ligated to
standard adapters. The ligation reaction was used as a
template for pre-ampliWcation using primers comple-
mentary to the adapter sequences plus one selective
nucleotide, namely EcoRI+A (or PstI+A) and MseI+C.
Selective ampliWcation was subsequently carried out
using primers carrying two or three selective nucleotides.
AmpliWed fragments were electrophoretically resolved
on 5% denaturing polyacrylamide gels and silver stained
as described by Bassam et al. (1991). Example of AFLP
proWles are shown in Fig. 1. S-SAP Wngerprinting
(Waugh et al. 1997) used a procedure based on the
AFLP protocol above. For the selective ampliWcation,
one AFLP primer was replaced with the Xuorescence-
labelled (IRD-700) Cyre5 primer designed to anneal to a
retroelement LTR (A. Acquadro, E. Portis, A. Moglia,
F.Magurno, S. Lanteri, submitted), and the other was an
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unlabelled AFLP primer (EcoRI, MseI or PstI) with
three selective nucleotides. PCR products were separated
on a DNA analyser Gene ReadIR 4200 (LI-COR) in
6.5% polyacrylamide gels (Sigma), as described by
Jackson and Matthews (2000). The M-AFLP Wngerprint-
ing method followed the procedure described by
Albertini et al. (2003), using the AFLP pre-ampliWcation
product as a template. BrieXy, selective ampliWcations
were carried out using a standard two or three selective
base AFLP primer (EcoRI, MseI or PstI) in combination
with an 5�-anchored microsatellite primer [PolyGA:
GTC(GA)8 or PolyGT: GAC(GT)8]. PCR products were
separated as described for S-SAP Wngerprinting. SSR
proWling used primer pairs developed in our laboratory

(Acquadro et al. 2003, 2005a, b). PCR ampliWcation
regimes were as detailed by Acquadro et al. (2003) and
amplicons were separated and stained as for AFLP,
except that the polyacrylamide content of the gels was
increased from 5 to 6%.

Mapping and linkage analysis

Electrophoretic patterns were documented using the
Gel Documentation System (Quantity One Programme,
BioRad), analysed twice and only reliable markers con-
sidered. Markers were separated into three types: (a)
maternal testcross markers, segregating only within
‘Romanesco C3’: i.e., female parent A1A2, male parent

Fig. 1 AFLP patterns of 40 F1 
plants and parents, ‘Spinoso di 
Palermo’ (A) and ‘Romanesco 
C3’ (B), ampliWed with the E33/
M48 (a) and E33/M50
(b) primer combinations. 
Segregating AFLP markers are 
indicated by arrows

A B
F1

A  B F1

a

b
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A1A1 (expected monogenic segregation ratio of 1:1), (b)
paternal testcross markers, segregating only within
‘Spinoso di Palermo’: i.e., male A1A2, female A1A1, (c)
intercross markers, segregating within both parents: i.e.,
either both parents A1A2 (expected segregation ratio =
3:1 for dominant markers, 1:2:1 for co-dominant), or
one parent A1A2, and the other A1A3 (or A3A4),
(1:1:1:1). The goodness-of-Wt between observed and
expected segregation data was assessed using the chi-
square (�2) test. Markers segregating in a Mendelian
fashion (�2·�2

�=0.1) or deviating only slightly from it
(�2

�=0.1<�2·�2
�=0.01) were used for map construction,

while those showing highly signiWcant segregation dis-
tortion (�2>�2

�=0.01) were excluded. Markers with
missing data for more than 30 of the 93 F1 individuals
were excluded. Two separate data sets were therefore
assembled: one was used to construct a linkage map for
‘Romanesco C3’ (markers a and c) and the other for
‘Spinoso di Palermo’ (markers b and c). The data were
analysed using JoinMap 2.0 software (Stam and Van
Ooijen 1995). For both maps, linkage groups were

accepted at a LOD threshold of 4.0. To determine
marker order within a linkage group, the following
JoinMap parameter settings were used: Rec = 0.40,
LOD = 1.0, Jump = 5. Map distances were converted
to centiMorgans using the Kosambi mapping function
(Kosambi 1944). Where a discrepancy arose in the
order of markers common to both a maternal and
paternal linkage group, the marker order of the ‘1:1’
segregating markers was used as a ‘Wxed order’ to
reconstruct the separate parental linkage groups. The
order of common markers was then inferred by mini-
mizing the number of singletons between the ‘3:1’ and
‘1:1’ segregating markers in the maternal and paternal
data sets. A singleton is assumed to be suspect as a data
point because it implies a double recombination event
(Han et al. 2002; Isidore et al. 2003).

Linkage maps were drawn using MapChart 2.1 soft-
ware (Voorrips 2002). AFLP, S-SAP and M-AFLP loci
were named according to primer combination (PC) code
(Table 1) with multiple markers generated by a given PC
ordered by decreasing molecular weight. SSR loci were

Table 1 AFLP, S-SAP and
M-AFLP primer combinations
used for linkage analysis

EcoRI/MseI template PstI/MseI template

PC Code PC Code

AFLP E+ACA/M+CAA e35/m47 P+AC/M+CAA p12/m47
E+ACA/M+CAC e35/m48 P+AC/M+CAT p12/m50
E+ACA/M+CAG e35/m49 P+AC/M+CTT p12/m62
E+ACA/M+CAT e35/m50 P+AG/M+CAA p13/m47
E+ACA/M+CTT e35/m62 P+AG/M+CAT p13/m50
E+ACC/M+CAA e36/m47 P+AG/M+CTA p13/m59
E+ACC/M+CAC e36/m48 P+AG/M+CTC p13/m60
E+ACC/M+CTA e36/m59 P+AG/M+CTG p13/m61
E+ACG/M+CAA e37/m47 P+AG/M+CTT p13/m62
E+ACG/M+CAC e37/m48 P+ATG/M+CAA p45/m47
E+ACG/M+CAG e37/m49 P+ATG/M+CAT p45/m50
E+ACG/M+CAT e37/m50 P+ATG/M+CTA p45/m59
E+ACG/M+CTG e37/m61 P+ATG/M+CTC p45/m60
E+ACT/M+CAA e38/m47 P+ATG/M+CTG p45/m61
E+ACT/M+CAT e38/m50 P+ATG/M+CTT p45/m62

S-SAP Cyre5/M+CAA cyre5/m47 Cyre5/P+AGC cyre5/p40
Cyre5/M+CAC cyre5/m48 Cyre5/P+AGT cyre5/p42
Cyre5/M+CAG cyre5/m49 Cyre5/P+AGG cyre5/p41
Cyre5/M+CAT cyre5/m50
Cyre5/E+AAG cyre5/e33
Cyre5/E+ACA cyre5/e35

M-AFLP PolyGA/E+AAG pGA/e33 PolyGA/M+CAT pGA/m50(P)
PolyGA/E+ACA pGA/e35 PolyGA/P+ATG pGA/p45
PolyGA/M+CAT pGA/m50(E) PolyGT/P+ATG pGT/p45
PolyGA/M+CC pGA/m16
PolyGA/M+CG pGA/m17
PolyGA/M+CTC pGA/m60
PolyGT/E+ACT pGT/e38
PolyGT/M+CAA pGT/m47
PolyGT/M+CC pGT/m16
PolyGT/M+CG pGT/m17
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named using the original primer nomenclature. Markers
that segregated with only a minor deviation from the
expected ratio are identiWed with one (�2

�=0.1<�2·�2
�=0.05)

or two (�2
�=0.05<�2·�2

�=0.01) asterisk (Fig. 2). Indepen-
dent linkage maps were constructed for each parent
using the double pseudo-testcross mapping strategy
(Weeden 1994).

Estimation of genome length

A method-of-moments type estimator (Hulbert et al.
1988), as proposed in ‘method 3’ by Chakravarti et al.
(1991), was used to estimate the genome length (G) of
each parent. In this method, G is given by the expression
N(N-1)X/K, where N is total number of mapped markers
in the major groups, X is the observed maximum dis-
tance between two adjacent framework markers in centi-
Morgans at a certain minimum LOD score, and K the
number of markers pairs with a LOD value at the same
minimum LOD score.

Results

AFLP, S-SAP and M-AFLP markers

Sixty-four AFLP PCs (four EcoRI primers £ eight
MseI primers and four PstI primers £ eight MseI
primers) were used to generate Wngerprints of both par-
ents and six F1 progenies. On the basis of the number of
polymorphic markers detected, the 30 most informative
PCs (15 EcoRI/MseI and 15 PstI/MseI, Table 1) were
taken forward for mapping. In all, 352 polymorphic
AFLP markers were identiWed, of which 66% were
heterozygous in one parent and absent in the other
(testcross markers), with the remainder being heterozy-
gous in both parents (intercross markers). The number
of polymorphic AFLP markers per PC ranged from 8
to 25, with a mean of 11.7 markers per PC (Table 2).
For S-SAP, the same group of 30 PCs were applied to
the parents and sample progenies, and nine of these
were used for mapping (Table 1). The number of
polymorphic S-SAP markers per PC ranged from 3 to
10 (mean 4.6 per PC), and 41 S-SAP markers were iden-
tiWed, of which 25 were testcross and 16 were intercross
markers (Table 2). Following a screen of 36 M-AFLP
PCs, 13 were used for mapping (Table 1). The number
of polymorphic M-AFLP markers ranged from 1 to 6
per PC, and generated a total of 38 (32 testcross, 6
intercross) informative markers (mean 2.9 per PC). Of
the 295 testcross markers, 160 (54%) were heterozygous
in ‘Romanesco C3’ and the remaining 135 (46%) in
‘Spinoso di Palermo’. An analysis of genotype frequen-
cies showed that about 14% of these AFLP and AFLP-
derived markers suVered from segregation distortion
(�2>�2

�=0.1). Alleles in the male parent showed more
segregation distortion than did those in the female
parent (16 vs. 10%). Twelve highly distorted markers

(�2>�2
�=0.01) were discarded prior to the construction

of linkage maps.

Microsatellite markers

Twelve of the 32 SSR primer pairs assayed were infor-
mative: these were CDAT-01, CLIB-04, CLIB-12
(Acquadro et al. 2003), CMAL-06, CMAL-8, CMAL-21,
CMAL-24, CMAL-108, CMAL-117 (Acquadro et al.
2005a), CMAFLP-04, CMAFLP-07 and CMAFLP 08
(Acquadro et al. 2005b). CLIB-04, CMAL-06 and
CMAL-117 segregated only in the female parent, while
CMAL-08 and CMAL108 segregated only in the male
parent. The remaining loci segregated in both parents
either in the ratio 1:1:1:1 (CDAT-01 and CLIB-12) or
1:2:1, and were thus located on both the male and female
linkage maps. All the SSR loci were included in the
linkage analyses, as minor segregation distortion
(�2

�=0.05<�2·�2
�=0.01) was observed only for one locus

(CMAL-08).

Map construction

After the exclusion of 12 markers showing highly signiW-
cant levels of distortion, 432 markers were available for
map construction (including presence/absence of spines).
In all, the maps were built from 300 loci for ‘Romanesco
C3’ (maternal) and from 275 for ‘Spinoso di Palermo’
(paternal). Of these, 143 loci were in common between
both maps.

For the maternal map, 204 markers were assignable
to 18 major linkage groups (LGs), each containing a
minimum of four markers (Fig. 1), and a further 19
markers were distributed as Wve triplets and two
doublets. Fifteen testcross (9%) and 62 intercross (42%)
markers remained unlinked. The length of the individual
LGs varied from 27.0 to 132.4 cM (mean 73.9 cM), com-
prising 4–26 loci per LG (mean 11.3). The mean inter-
marker distance was 6.5 cM, and the longest gap of
26.6 cM was found on LG4. Although the majority
(76%) of map intervals were less than 10 cM, some large
gaps remain in the map. The markers generated by
EcoRI/MseI and PstI/MseI were evenly distributed
across all 18 LGs, without any obvious clustering of
markers generated by any one PC. Only four LGs (LG6,
13, 14 and 15) were composed solely of AFLP loci.
Microsatellite loci (SSR and M-AFLP) and S-SAP frag-
ments were distributed over, respectively, nine and eight
LGs. Seventeen loci with minor segregation distortion
were mapped to 12 LGs (14 at �=0.05 and three at
�=0.01), and groups of distorted loci in close linkage to
one another were detected on LG1, LG10 (three loci per
LG) and LG5 (two loci).

For the paternal map, 180 loci were arranged into 17
LGs, with three triplets and three doublets (Fig. 1).
Seventeen testcross (13%) and 62 intercross (42%) mark-
ers remained unlinked. The length of the LGs varied
from 26.5 to 126.7 cM (mean 72.9 cM). The number of
loci per LG varied from 4 to 21 (mean 10.6), giving a
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Fig. 2 Genetic maps of the globe artichoke varietal types ‘Romane-
sco C3’ (female parent, white LGs on the left) and ‘Spinoso di Paler-
mo’ (male parent, grey LGs on the right). Aligned LGs are presented
side-by-side. For the female map, marker names are shown on the
right of each linkage group with map distances (in centiMorgans) on
the left; for the male map, the mirror arrangement applies. Intercross
markers are shown in italics, and in bold for those used to align LGs,

which are connected with a line. LGs with fewer than four markers
are shown as ‘minor groups’. Markers showing signiWcant levels of
segregation distortion are indicated by asterisks (*0.1>P¸0.05,
**0.05>P¸0.01). The ‘Wxed order’ of bridge markers identiWed with
superscript 1 was imposed by minimizing the number of singletons
between the ‘3:1’ and ‘1:1’ segregating markers
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Fig. 2 (Contd.)
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marker density of one per 6.9 cM, with the largest gap
(27.1 cM) being on LG13. Most of the genetic intervals
(77%) were below 10 cM, but large gaps were present in
some regions. AFLP loci were evenly distributed over the
17 LGs, with no obvious clustering of markers generated
by any one PC. Only four LGs (LG6, 12, 13 and 18) were
composed solely of AFLP loci. Microsatellite loci (SSR
and M-AFLP) and S-SAP fragments were distributed
over, respectively, 13 and 10 LGs. Eighteen loci (9.9%)
with minor segregation distortion were mapped to 11
LGs (13 at �=0.05 and 5 at �=0.01), and groups of dis-
torted loci in close linkage to one another were detected
on LG1, LG12 (four loci per LG) and LG2 (two loci).

Map length, genome coverage and alignment

The 18 maternal LGs spanned 1330.5 cM, and covered
53.4% of the estimated G of 2491.0 cM. Similarly, the 17
paternal LGs spanned 1239.4 cM (54.6% of G,
2268.0 cM). The maternal and paternal maps shared
most of the intercross markers (78 out of the 82
mapped). On the basis of these bridge markers, 16
aligned LGs were identiWed and could therefore be given
a consensus LG number. The number of bridging
markers for each consensus LG varied from 1 to 14
(mean 4.6). No common loci were mapped on the
remaining LGs (maternal LG17 and LG18, and paternal
LG17). Intercross markers also deWned four common
minor LGs (Fig. 2).

Presence/absence of spines

Presence:absence of spines segregated in a 1:1 ratio
(�2=0.04), conWrming that this trait is controlled by a
single gene with two alternative alleles: dominant non-
spiny (Sp) and wild-type spiny (sp) (Pochard et al. 1969;
Basnizki and Zohary 1994). ‘Spinoso di Palermo’ is
homozygous recessive spsp, while ‘Romanesco C3’ is het-
erozygous Spsp. Because only the female parent is
heterozygous, Sp could only be located on the maternal

map, where it was located on LG16, Xanked by two SSR
loci: CMAFLP-08 and CMAFLP-07.

Discussion

Mapping population

We have created a F1 mapping population and applied
the two-way pseudo-testcross strategy to construct
genetic maps of two well-diVerentiated globe artichoke
genotypes (Lanteri et al. 2004). ‘Romanesco C3’ is a late
maturing type, producing large, green spherical, non-
spiny heads between March and June, while ‘Spinoso di
Palermo’ is an early maturing type, which can be forced
to produce medium, violet, elongated heads between
autumn and spring, and carries long sharp spines on its
bracts and leaves. The parents also diVer from one
another for other morpho-physiological and agronomic
characters, some of which may be key breeding traits. In
globe artichoke, cross-pollination is promoted by prot-
andry, but self-pollination is not precluded. The stig-
matic surface is receptive to pollen 2–3 days after pollen
shedding, and therefore fertilization of peripheral Xorets
can be eVected by the pollen of more internal ones, since
Xowering progresses from the periphery to the centre of
the head. Some self-pollination is also possible through
pollen transfer between heads, as each plant produces
four to six asynchronously Xowering capitula. For this
reason, it was necessary to pre-screen the mapping popu-
lation for hybridity with SSR markers to avoid the inclu-
sion of individuals which were not the result of the
crossing of the two parents in the mapping population.

Marker generation

We exploited two categories of markers: (1) anonymous
sequences which require no a priori genome sequence
information (AFLP and M-AFLP), and (2) markers
where some prior sequence knowledge was necessary—

Table 2 Markers generated for the genetic mapping in ‘Romanesco C3’ and ‘Spinoso di Palermo’

aMarkers segregating 1:1
bMarkers segregating 3:1. 1:2:1 or 1:1:1:1
cMarkers not included in the linkage analysis

No. of PC 
screened

No. of PC 
used

Maternala 
(Romanesco C3)

Paternala (Spinoso 
di Palermo)

Intercrossb Total Average number 
per PC

AFLP 64 30 121 112 119 352 11.7
S-SAP 30 9 17 8 16 41 4.6
M-AFLP 36 13 19 13 6 38 2.9
SSR 32 12 3 2 7 12 1.0
Total 162 64 160 135 148 443 7.1
Distorted markers �2

�=0.1<�2·�2
�=0.05 (%) 6 (4%) 8 (6%) 14 (9%) 28 (6%) 0.5

Distorted markers �2
�=0.05<�2·�2

�=0.01 (%) 7 (4%) 11 (8%) 2 (1%) 20 (5%) 0.3
Distorted markers �2>�2

�=0.01 (%)c 3 (2%) 3 (2%) 6 (4%) 12 (3%) 0.2

Total distorted markers (%) 16 (10%) 22 (16%) 22 (15%) 60 (14%) 1.0
Total mapped markers (%) 142 (89%) 115 (85%) 81 (55%) 338 (76%) 5.5
Unlinked markers 15 17 61 93 1.5
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i.e., retrotrasposon-based S-SAP, and SSRs which had
been speciWcally developed from artichoke by Acquadro
et al. (2003, 2005a, b, A. Acquadro, E. Portis, A. Moglia,
F. Magurno, S. Lanteri, submitted). The AFLP tech-
nique was chosen on the basis of good reproducibility,
and because, in our experience, most AFLP markers seg-
regate monogenically (Lanteri et al. 2004; Portis et al.
2005a, b). Thus they generally generate large amounts of
good quality genotypic data, with a relatively low input
of labour, producing Wnally 352 robust, and genomically
widely distributed markers. The M-AFLP technique is
closely related to AFLP, and the distribution of these
markers was expected to mirror that of AFLPs. How-
ever, it has been demonstrated that the frequency of
microsatellite motifs is signiWcantly higher in transcribed
regions than in non-transcribed DNA (Morgante et al.
2002), so M-AFLPs may be more eYcient than AFLP
for gene tagging (Albertini et al. 2003). S-SAP proWling
requires prior knowledge of the retrotransposon LTR
sequence. Although retrotransposons are generally
abundant, conserved and dispersed in plant genomes,
until now their presence and distribution in C. carduncu-
lus has not been characterized. Finally, some SSR
markers were included, as these are ideal for linkage
mapping on account of their robustness, polymorphism,
co-dominant inheritance and conservation at the intra-
speciWc level. (Wu et al. 2004). These features ensured
their eVectiveness in identifying shared LGs between the
maps obtained from diVerent mapping experiments.

Marker segregation

We targeted a F1 population to avoid inbreeding depres-
sion, which has been associated with segregation distor-
tion and therefore bias in the estimation of linkage
distances (Tavoletti et al. 1996). About 86% of the
markers segregated in a strict monogenic Mendelian
fashion, with segregation distortion being detected at
only 14% of loci, consistent with the level found in simi-
lar studies (Conner et al. 1997; Barreneche et al. 1998;
Casasoli et al. 2001; Han et al. 2002; ScalW et al. 2004;
Wu et al. 2004; Pekkinen et al. 2005). The origin of segre-
gation distortion can be associated with statistical bias
or errors in genotyping and scoring, but is mainly a con-
sequence of biological factors, such as chromosome loss,
non-random union of gametes, zygotic survival, changes
in genetic load (Bradshaw and Stettler 1994) or null alle-
les (Pekkinen et al. 2005). Cervera et al. (2001) have
reported that where distorted markers are ignored, a sig-
niWcant part of a linkage group can be excluded, and
therefore suggested the inclusion of markers that deviate
from Mendelian segregation at the 5% level (but not at
the 1% level) in order to reduce the probability of type I
(false linkage) errors. Similarly DoucleV et al. (2004) con-
cluded that the exclusion of markers showing distortion
at <1% leads to the loss of a large segment of two link-
age groups. In contrast, the inclusion of highly distorted
markers in linkage analysis has been demonstrated to be
beneWcial in some mapping studies (Kuang et al. 1999;

Fishman et al. 2001). In the present work, we have
chosen to include only markers deviating at 1% and
above. Clusters of such markers were found on linkage
groups LG1, 5 and 10 in the female map, and LG1, 2 and
12 in the male map. These regions were unidirectionally
biassed in the sense that all distorted markers showed an
excess of the presence of the parental allele. This is sug-
gestive of a biological mechanism underlying segregation
distortion, as opposed to random bias caused by scoring
errors or chance (Fishman et al. 2001).

Map construction and marker distribution

Two comprehensive maps have been developed—one
consisting of 204 markers arranged on 18 LGs, with a
total length of 1330.5 cM and a mean inter-marker dis-
tance of 6.5 cM, while the other included 180 markers
ordered into 17 LGs, covering 1239.4 cM, with a marker
density of 6.9 cM. In addition, a small number of
unlinked triplets and doublets were generated in both
maps. Since the number of LGs deWned in the male map
is equal to the haploid chromosomal number of arti-
choke, the formation of 18 LGs in the female map, as
well as the presence of various minor groups and
unlinked single loci in both maps indicates that further
analysis will be necessary to genetically deWne all the
chromosomes. The two maps were aligned with 78 com-
mon intercross markers, and these identiWed 16 LGs.
Intercross markers are less informative than testcross
markers where they are of the dominant type A/a, since
only in the homozygous recessive aa individual is it
unambiguous as to which allele came from which parent
(Crespel et al. 2002). However, this limitation does not
apply for co-dominant markers where the two parents
share no alleles (i.e., one is A1A2 and the other A3A4).

A clustering of markers was observed in some LGs,
and in most cases was concentrated in the middle of an
LG. Such clustering is not uncommon (Keim et al. 1990;
Reiter et al. 1992; Tanksley et al. 1992; Vallejos et al.
1992), particularly, although not exclusively, in centro-
meric regions, where reduced recombination usually
applies (Tanksley et al. 1992). Microsatellite-based loci
(SSR and M-AFLP) were randomly distributed across
most of the LGs. The 27 loci mapped in the female map
were present on 13 of the 18 LGs, with up to four per
LG, generally unclustered. A similar distribution applies
to the male map. In all, 39 microsatellite loci were placed
on the aligned map, covering 13 of the 16 LGs, as well as
two non-aligned groups (one for each map). S-SAP loci
were also well distributed: 19 loci were placed on the
female map, covering 10 out of the18 LGs, with 1–4 loci
per LG. Clusters of S-SAP loci were present on LG5 and
LG7 (three and four fragments, respectively) (Fig. 1). On
the male map, 14 S-SAP loci were mapped to eight of the
17 LGs, with some clustering on LG2 and LG11 (three
fragments per LG). A total of 27 common S-SAP loci
were present on the aligned map, which covered 12 out
of the 16 aligned LGs. A cluster of Wve S-SAP loci was
detected on LG7.
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Conclusion

To our knowledge, this is the Wrst description of a marker-
based linkage map in globe artichoke. Linkage relation-
ships among molecular markers represent the initial step
for the future identiWcation of chromosomal regions car-
rying genes of interest and their future targeting in breed-
ing programmes aiming to incorporate marker-assisted
selection. Since globe artichoke can be easily vegetatively
propagated, the mapping population described here is
immortal, and thus can be grown in contrasting environ-
ments to facilitate the identiWcation of QTL which have a
signiWcant eVect on key agronomic characters. C. cardun-
culus includes both the cultivated forms globe artichoke
and cultivated cardoon, as well as their progenitor wild
cardoon. We are currently planning the construction of
marker-based genetic maps based on F1 populations
involving combinations between ‘Romanesco C3’ and
either cultivated or wild cardoon accessions, as these will
allow us to undertake comparative QTL mapping studies.
Wide cross populations of this type will facilitate the
exploration of the genetic control of quantitative charac-
ters in exotic genetic backgrounds. Although we have
relied heavily on common AFLP or AFLP-derived
markers for map alignment, we aim in the future to move
to common SSR markers, which will require a signiWcant
eVort in the development of new microsatellite assays.
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